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We give an elementary new method for obtaining rigorous lower bounds on the 
connective constant for self-avoiding walks on the hypercubic lattice Z a. The 
method is based on loop erasure and restoration, and does not require exact 
enumeration data. Our bounds are best for high d, and in fact agree with the 
first four terms of the lid expansion for the connective constant. The bounds are 
the best to date for dimensions d>~ 3, but do not produce good results in two 
dimensions. For d =  3, 4, 5, and 6, respectively, our lower bound is within 2.4%, 
0.43%, 0.12%, and 0.044% of the value estimated by series extrapolation. 

KEY WORDS: Self-avoiding walk; connective constant; loop erasure; 
random walk; lid expansion. 

1. I N T R O D U C T I O N  

An n-step, self-avoiding walk on the hypercubic lattice Z d is a sequence 
co= (co(0), c0(1),..., co(n)) of points in 2d, with co(i) and co(i+ 1) separated 
by Euclidean distance one, subject to the constraint that co(i)r co(j) for 
i r  Unless otherwise stated, we take co(0)=0. The self-avoiding walk 
provides a model of a polymer molecule with excluded volume. Also, 
its equivalence to the N =  0 limit of the N-vector model has made it an 
important test case in the theory of critical phenomena. 

Let c n denote the number of n-step self-avoiding walks. It has been 
known for almost 40 years (1) that the limit /~ =lim,~o~ c~/" exists and is 
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finite and positive. Moreover, the subadditivity argument showing the 
existence of this limit also shows that # =inf,~>~ c]/~. This limit is known as 
the connective constant, and is the analogue of a critical temperature for 
the N-vector model. Roughly speaking, g measures the number of sites 
available for the next step of a long self-avoiding walk. The connective con- 
stant is admittedly of lesser interest than the critical exponents, because it 
is lattice-dependent, while the critical exponents are universal. Nevertheless, 
much work has been done in finding rigorous upper and lower bounds for 
the connective constant, principally on two- and three-dimensional lattices. 
A review of work through 1982 is given by Guttmann. (2) 

Recently, two of us (3'4) proved that the critical exponents for self- 
avoiding walks in dimensions d>~5 take their mean-field values (7= 1, 
v = 1/2, t /= 0). One key ingredient in this proof was an accurate numerical 
lower bound on the connective constant #. Unfortunately; we were unable 
to prove Such a numerical bound with existing methods; in fact the pre- 
vious methods give estimates which deteriorate as. d--, oe (see Section 6). 
Therefore, we were led to develop a new method for obtaining lower 
bounds on ~t, using loop erasure and restoration. This method (with the 
improvements presented here) provides bounds that agree with the first 
four terms of the lid expansion; for d t> 4 they are within 0.43 % of the best 
numerical estimate of/~, and even for d =  3 they are within 2.39% (greatly 
improving the best previous lower bounds). We therefore thought it worth- 
while to develop these methods in detail; that is the goal of the present 
paper. The method presented here involves a conceptual simplification 
of the methods used in ref. 4, and also leads to better lower bounds. 
Remarkably, even the most elementary of our new methods leads to a 
better lower bound in d =  3 than has been obtained previously, including 
the enumeration bound 4.352 of ref. 2. Table I summarizes our best bounds 
and compares them to previously obtained bounds on/~. 

Table I. Rigorous Lower and Upper Bounds on the Hypercubic-Lattice 
Connective Constant p, Together wi th  Estimates of Actual Values, 

for Dimensions 2, 3, 4, 5, 6 ~ 

d Previous bound This work Estimate Upper bound 

2 2.62002 (5) 2.305766 2.6381585(10) (7'8) 2.69576 (6) 
3 4.43733 (4) 4.572140 4.683907(22) ~9) 4.756 (6) 
4 6.71800 ~4) 6.742945 6.7720(5) (l~ 6.832 (6) 
5 8.82128 (4) 8.828529 8.8386(8) ~11) 8.881 (6) 
6 10.871199 ~4) 10.874038 10.8788(9) (11) 10.903 ~6) 

a Errors in the last digit(s) are shown in parentheses (numerals in superscript parentheses are 
reference numbers). 
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The evaluation of our bounds requires some numerical computation, 
for which we have obtained rigorous error estimates. All numerical values 
reported in this paper are accurate up to rounding of the last digit, except 
for lower bounds on /~, which have been truncated so as to provide true 
lower bounds. 

Our methods can be applied to SAWs on any regular lattice. But for 
simplicity we restrict attention here to the hypercubic lattice Z J. 

The plan of this paper is as follows: In Section 2 we describe the 
method of loop erasure and restoration, and systematize the lower bounds 
on/~ that can be obtained from it. These bounds involve generating func- 
tions of random walks with taboo sets, and in Section 3 we show how these 
taboo generating functions can be computed in terms of the massless-free- 
field lattice propagator. In Section 4 we discuss some aspects of the lower 
bounds on/~ obtained. In Section 5 we remark on a different method for 
proving lower bounds on ~t, based on comparison with the Ising model. 
In Section 6 we show that our best bounds agree with the 1/d expansion for 
# through order d 2. In the Appendix we summarize our methods for the 
rigorous numerical calculation of quantities involving the free-field lattice 
propagator, and give 1/d expansions for various simple-random-walk 
quantities. 

In a separate paper (12~ two of us give a rigorous lid expansion for # 
through order d -3, along with a similar expansion for the critical point of 
nearest-neighbor Bernoulli bond percolation. 

2. LOOP E R A S U R E  A N D  R E S T O R A T I O N  

2.1. D e f i n i t i o n s  

To describe our loop-erasure-and-restoration method, we need to 
introduce a number of generating functions. For  this we need several 
definitions. 

An n-step walk (n>~O) is an ordered sequence co = (co(0) ..... co(n)) of 
points in 7/d such that each point is a nearest neighbor of its predecessor, 
i.e., Ico(i)-co(i-1)l = 1 for 1 ~< i<~n. We denote the number of steps in a 
walk co by Io~1. The walk co is said to be a memory-r walk if co(i) # co(j) for 
all i,j satisfying 0 <  l i - j l  <~. We denote by f2~(x, y) the union over all 
n = 0, 1, 2 .... of the set of memory-r n-step walks from co(0)=x  to co(n)= y. 
Thus, Qo(X, y) is the set of all walks from x to y, f22(x, y) is the set of all 
walks having no immediate reversals, f24(x, y) is the set of all walks having 
neither immediate reversals nor elementary squares, and so on. The 
elements of f2 o are called simple (or ordinary) random walks. We denote by 
f2(x, y) - ('1~=o O~(x, y) the set of all self-avoiding walks (of any number 

822/72/3-4-5 
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of steps) which begin at x and end at y. Finally, we denote by 
f2(x, o)= U y~ z~ f2(x, y) the set of all self-'avoiding walks (of any number of 
steps) which begin at x and end anywhere. 

A walk co = (co(0),..., co(n)) is said to be a loop if co(0) = co(n). We write 
&at(x ) = O~(x, x) for the set of memory-z loops starting and ending at x. 
Note that such loops are allowed to pass through x many times, and that 
5e~(x) includes the zero-step walk co= (x). Note also that the memory-r 
constraint does not apply mod n: for example, co(n-1)  is permitted to 
equal co(l). 

Given a nonnegative real number/3, we define the generating function 
(or two-point function or Green function) for memory< walks, 

C~(x, y;/3) = ~ /3h~l (2.1) 
w ~ G'~(x, y )  

and for self-avoiding walks, 

G(x,  y;/3) = ~ /31o)l (2.2) 
o a e f 2 ( x , y )  

Denoting the number of n-step memory-~ walks (starting at the origin and 
ending anywhere) by c .... we also define the susceptibilities 

,~(/3) = Z C,(O, x;/3) = ~. cn,,/3" (2.3) 
x E ~  d n = O  

and 

z(/3)-- E a(o, x;/3) = E c./3 ~ 
x ~ Z  d n = O  

(2.4) 

For/3 >/0 the sums (2.1)-(2.4) are always well defined, although they will 
be + oo for sufficiently large /3. In fact, since limn~ o~ _l/= c= = #  and cn~>#n, 
we have 

(1 - /3#)-~ < Z(/3) < ~ for O~</3<p -1 (2.5a) 

Z(/3) = oo for /3 ~>p-1 (2.5b) 

Similarly, the same subadditivity argument which implies existence of the 
limit defining # can also be used to prove that 

#~ ~ lim cl/n= inf c 1/" (2.6) 
n ~ o o  n,'r n > ~ l  n,z" 
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for all 0 ~< v < 0o. It follows from (2.6) that 

( t- f l#~)-l<~Z~(fl)<~ for 0~<f l<#~  1 (2.7a) 

Z ~ ( f l ) = ~  for fl~>#71 (2.7b) 

Clearly #o~> #2/> #4 > /  ~> #. A subadditivity argument can be used to 
show that l i m ~  # , = #  (see, for example, Lemma 1.2.3 of ref. 13). Since 
c,,0 = (2d)" and c,, 2 = 2 d ( 2 d - 1 ) " - ~ ,  we have #o = 2d and #2 = 2 d - 1 .  The 
value of #4 is shown in ref. 14 to be given by the unique positive root of 
the equation 

x 3 - 2 ( d -  1 ) x 2 - 2 ( d -  1 ) x - 1 = 0 (2.8) 

A]though methods are described in ref. 14 by which in principle #~ can be 
computed for z >~ 6, in practice these methods are difficult to carry out in 
general dimensions. 

To compute our lower bounds on # we will need the numerical values 
of C~(0, x; ]AT -1) for a finite collection of sites x. For  v = 0 this is given by 
the well-known Fourier integral ("free-field lattice propagator") 

d a k  e ik  " x r Co(O, X; ~) (2.9) 
JE ~,=J (2g) d 1 - 2dflD(k) 

where 

D(k) ~- ~ cos ki, k = (kl ..... kd) (2.10) 
i=1 

This expression is valid for O<~fl<.l/(2d). At the critical point 
fl = # o 1 =  1/(2d), the integral (2.9) is finite for d >  2 but infinite for d~< 2. 
An effective means for computing the numerical values of (2.9) to high 
precision for d >  2 is discussed in the Appendix. 

To study d~<2 (of course it is d = 2  which is of interest here), we 
introduce the potential kernel (15'16) 

Ao(X; fi)-= Co(0, 0; f l ) -  Co(0, x; fl) (2.11) 

which remains finite in all dimensions, as f i t  1/(2d). Indeed, it is an 
immediate consequence of the Lebesgue dominated convergence theorem 
that Ao(x)=lim~Tl/(2d~Ao(x;fl) is given by the absolutely convergent 
Fourier integral 

f ddk 1 - cos(k- x) 
Ao(x) = (2.12) 

E . . . .  3d (2=) d 1 - / 3 ( k )  
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In dimension d =  1, an easy calculation yields Ao(x ) = [xl. Remarkably, in 
dimension d =  2 this integral can also be performed analytically for any 
x (ref. 15, Section 15): for example, Ao(el)= 1, Ao(2el)=4-8/u, and 
Ao(el + e2) ----- 4/72. (Here el, e2 are the canonical unit vectors in Z2.) 

For ~ = 2 the two-point function can be evaluated using the identity 

1- fl2 Co (O, x; fi ) 
C2(0, x; fi) = 1 + (-2d--- 1) fla 1 + ( 2 d -  1) f12 (2.13) 

which was derived using convolution methods in ref. 17. At the critical 
point fl = # 2 1 =  1/ (2d-1) ,  this reduces to 

1 - -  (0, x; C2 (O, x; 2-ff"~_ l) =2d- 2 2 d - 1  C~ l )  (2.14) 

Unfortunately, we do not know how to compute the numerical values of 
C~(0, x;#~ -~) for ~>~4; because of this we primarily restrict attention in 
what follows to ~ = 0, 2. 

We remark that unlike the finite-memory case, it is believed that the 
self-avoiding-walk critical two-point function G(0, x; #-1) is finite for all x 
in all dimensions, including d =  1, 2. This has been proven for d>~ 5 in 
refs. 3 and 4 ~ a n d  of course it is trivial in d = 1--but it remains unproven 
in dimensions 2, 3, and 4. It has been known for some time that 
G(0, x; fl) = ~ for fl >/~ 1.(18) 

2.2. Identities 

We would like now to establish an inequality relating the two-point 
functions (2.1) and (2.2). For this, we recall the following loop-erasure 
algorithm, which has been studied in detail by Lawler. (16) Given a walk 
co e s y), we can associate to it a (typically shorter) self-avoiding walk 
p e t'2(x, y) by erasing loops in an appropriate sequence. We begin by 
finding the last time tl such that c0(tl)= co(0)= x, and then erase the sites 
co(l), co(2),..., co(tl) from co, producing a walk which we call p(1). In other 
words, we have erased the largest possible loop at the site x, namely 
Lo= (co(0),..., co(t1)). (If co does not visit x more than once, then we can 
think of having erased a trivial loop.) The walk p(1) does not visit x more 
than once, but it may visit the site p(1)(1) repeatedly. Let t2 denote the last 
time that p(X)(tz)=p~ and erase the sites p(1)(2),..., pI1)(t2) as before. 
Note that the erased loop Ll=(p(1)(1),..., p(1)(t2) ) cannot pass through 
co(0) =x .  This procedure gives rise to a walk p(2), which does not visit 
p(2)(0) or  p(2)(1) more than once. We repeat this procedure successively for 
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p(2), p(3), etc., until arriving at a result which is devoid of loops, or in other 
words, which is self-avoiding. For each ~, this defines a one-to-one 
mapping from ~ ( x ,  y) into the set ~ ( x ,  y) whose elements are of the 
form (p, L0, La,..., L~), where p ~s y) is an n-step self-avoiding walk 
(for some n) and each L ~ ( p ( i ) ) .  We refer to p as the self-avoiding 
backbone of co. 

In fact it is not difficult to see precisely what the image of this mapping 
is, or in other words, to see exactly which elements of ~ ( x ,  y) can be 
produced by this procedure, at least for v = 0 or 2. One way to do so is to 
try to reverse the procedure, by beginning with an element of ~ ( x ,  y) and 
associating to it the walk o~ which is given by first following the steps of 
Lo, then taking the first step of p, then taking the steps of L~, then taking 
the second step of p, and so on. For  z = 0, each possible simple random 
walk from x to y can be obtained in precisely one way by this procedure, 
provided that the loop Lg attached at p(i) does not intersect any of the 
previous sites p(0),..., p( i -1 ) ,  for all i-= 1,..., IP[- For ~ = 2  the situation is 
similar but slightly more involved: the attached loops must again avoid the 
previous sites as above, but in addition the next-to-last site of the loop L~ 
must avoid the next site p(i+ 1) of the backbone (except of course for 
i =  [Pl, when this constraint is vacuous). For  memories ~/> 4 the situation 
is more complicated, due to the presence of interloop restrictions, and we 
refrain from entering into details. 

The above discussion can be summarized with identities, which are 
stated below for ~ = 0 and v = 2. To state the identities we first define the 
generating functions with taboo set A: 

C~(x, y; #)= ~ fllCol (2.15) 
co E Y2~(x, y ): CO ~ A = ~ 

~A.~(X ' y; f l )=  #1col (2.16) 
c o ~  

E 
(2v(X, y ) :  Co c~ A = 

co(l~oJ- 1)~:z 

which avoid the set of sites A; in the 
restriction that the next-to-last site of 

C~)[~ p(j); fl) (2.17) 

~o.j),p(j+ ~)(p(j), p(j); fl) (2.18) 

Ipl 

Co(x, y; fl)= Z #,;r Ti 
p E U 2 ( x , y )  j ~ O  

IP[ 

C2(x, y; #)= Z II 
p ~ 2 ( x ,  y )  j ~ O  

In both cases the sum is over walks 
latter case we impose the additional 
co is not z. Clearly, C~'-A Z(x, y; fl) <~ C~(x, y; fl), and both quantities are 
decreasing functions of v and of the set A. We also define p[0, j )  to be the 
set of sites {p(0),..., p ( j -  1)}, for j =  1 ..... [oJ], and let p[0, 0) be the empty 
set. We can then write the identities 
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where the j =  fP/ term in this last equation should be interpreted as C~ E~ 
[since the site p(j+ 1) is nonexistent]. For higher memories it is less 
straightforward to write the analogous identities, because of the interloop 
constraints; but by dropping those constraints we have immediately the 
inequalities 

lal 

C,(x,y;fl)<, ~ [ 1'pl [I CP~E~ f o r ~ > 0  (2.19) 
p~g2(x,y) j = O  

Ipl 
C~(x,y;fl)<~ ~. fllpl I~ ~[o.j).pu+,)(p(j),p(j);fl) forr~>2 (2.20) 

pcg?(x,y) j = O  

2.3. Inequalities (First Version) 

It is certainly difficult to analyze the right sides of (2.17)-(2.20) 
exactly, but we wish to do something less ambitious: we will obtain upper 
bounds by relaxing the avoidance contraints on the attached loops. In 
particular, we can obtain upper bounds by replacing the restriction that the 
loop attached at p(j) avoid all of p[0, j )  by the weaker restriction that it 
avoid only the smaller set 

p[j-k,j)=-- {p(j-k),..., p( j -  1)} (2.21) 

where k is a (small) fixed nonnegative integer. [For  k = 0, p[j, j )  = ~ ;  and 
for k > j we omit the nonexistent points p(i) with i < 0.] Applying this to 
(2.17)/(2.19) leads to the inequality 

Ipl 

C~(x, y;3)<~ ~ fll~ M C~U-k'J)(p(j),p(j);fl) (2.22) 
p~2(x, .v)  j = O  

for any r, k~>O. Now the set of sites p[ j -k , j )  is (for j~>k) simply the 
range of a ( k -  1)-step self-avoiding walk starting at a nearest neighbor of 
p(j); so we can get a further upper bound by taking the maximum over all 
such sets. Taking into account translation invariance, this leads us to define 

AT(k; fl) = max cA(0, 0; fi) (2.23) 
A 

where the maximum ranges over all k-element sets A which are the range 
of a ( k -  1)-step self-avoiding walk starting at a nearest neighbor of the 
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origin. This m a x i m u m  is obviously a nonincreasing function of r and k. 
Clearly we have 4 

C~(x, y; fl) <~ 

where 

fllPlA~(O; fi) A~(1; f l )""  A ~ ( k - 1 ;  fl) A,(k; fi) Ipl+ ~-k 
p~E2(x, y) 

=- c~.k(fl) G(x, y; flA~(k; fl)) (2.24) 

1 ] 
a~,k(fl) = At(i; fl) At(k; fl)~-k 

i = 0  

(2.25) 

Summing  over  y ~ Z d, this gives 

z~(/~) 
- -  <~ Z ( f l A ~ ( k ;  f i)  ) 

This is our  fundamenta l  loop-erasure-and-restoration 
simplest form. 

We shall argue below that  

inequality, 

(2.26) 

in its 

lim Z~(fl) = oo (2.27) 
~ T ~ :  ~ ~,k(/~) 

for v = 0 ,  2, all k>~0, and all d > 0 .  We expect that  (2.27) is true also for 
all ~ >~ 4, but  we have not  p roved  this, nor  shall we make  use of  it. Given 
(2.27), it is now easy to obta in  a lower bound  on #, in the following way. 
By (2.27) and (2.26), Z(/~-IA~(k; # ~ ) ) =  +oo.  But we know from (2.5a) 
that  Z(x) < oo for x < 1/#. We thus conclude that  

A~(k;#~-') 1 
~> - (2.28) 

#~ # 

or  in other  words  

#~> #~ for ~ = 0 , 2 ,  k~>0, d > 0  (2.29) 
A ~(k; #~- 1) 

The bound  (2.29) would also follow for v ~>4 if (2.27) were proven  for 
such T. 

The claim (2.27) follows immediate ly  f rom (2.7a) if ~ ,k(#~ -1) is finite. 
And it follows easily f rom (2.25) that  c~,k(#~ 1) is finite precisely when 

4 The terms with [Pt < k -  1 here are being overcounted on the right-hand side, to simplify the 
form of the inequality. 
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A~ (0; #~-') = C~(0, 0; # ~ )  is finite [-recall that At(i;/3) <~A~(0;/3) and 
As(k;/3)>f 1]. For T = 0  or 2 the finiteness of CT(0, 0; #~1) in dimensions 
d > 2  follows immediately from (2.9) and (2.14). This proves the claim 
(2.27) for d > 2 .  For d~<2, consider first T=0.  We have trivially that 
Ao(k;/3)>fl. Also, it is well-known (see Section3.1) that Ao(1; /3)-  
C{oe}(o, 0;/3) is uniformly bounded for/3 ~< 1/(2d), in all dimensions; hence 
the same is true for Ao(i; 1/(2d)) for all i >/1. Finally, for i = 0 we have 

[ constx  (1 -2d/3) -(2-d)/2 for d < 2  

A0(0;/3) = Co(0, 0;/3) ,-~ ]cons t  x log(1 - 2d/3) for d =  2 

(cons t  for d >  2 

(2.30) 

as ill" 1/(2d). Hence in any dimension d > 0  we see from (2.7a) and (2.30) 
that Ao(0;/3) diverges more slowly than 7~0(/3) as fi t  1/(2d); therefore, 
lim~tl/(za)Zo(/3)/~o,k(/3)= ~ .  The same argument can be used for ~---2, 
using also (2.13). 

We remark that another possible approach to bounds on ~t of this 
type, which we will not pursue further, would be to substitute some 
fl < # ~ 1  in (2.26), rather than/3=#~-1,  and then to optimize over/3. This 
surely gives an improvement when d =  2 and k = 0, but it requires some 
#-dependent a priori upper bound on Z(/3), and the only available such 
bound is the very weak Hammersley-Welsh bound ~176 (for which explicit 
constants would be required). 

To see explicitly what the bounds (2.29) entail, let us consider first 
the case z--0 ,  for which /~0=2d. Taking k = 0  and k = l  gives 
A0(0; 1/(2d))= Co(0, 0; 1/(2d)) and Ao(1; 1/(2d)) = C0{e}(0, 0; 1/(2d)) (by 
symmetry, where e is any neighbor of the origin), so (2.29) becomes 

2d 
#/> [k = 0] (2.31) 

Co(0, 0; 1/(2d)) 

2d 
/2 ) (..(~ ~U~'e}"~ O; 1/(2d)) [k = 1 ] (2.32) 

For a discussion of the relation between (2.31) and some previously known 
results, see Section 5. The denominator on the right side of (2.31) is infinite 
in dimension d~<2, but this defect is remedied in (2.32): in Section 3.1 we 
shall prove the identity 

Co~e~(o, o; 1 / (2d))  = 2 - 4 2 (2.33) 
Co(O, O; 1/(2d)) 
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in all dimensions. This already improves the method used in ref. 4, where 
an infinite denominator was always encountered for d~<2. In the trivial 
case d =  1, (2.32) gives the exact answer # >~ 1. For d =  2, (2.32) gives the 
rather poor bound # >  2. For d =  3, (2.32) already does better than all 
previously known bounds, yielding # 7> 4.475817 .... In Section 3.1 we show 
how to carry out the computations at least in principle for arbitrary values 
of k, and we give explicit numerical results for k = 0, 1, 2, 3, 4 in dimensions 
d =  2, 3, 4, 5, 6. The resulting lower bounds on # are tabulated in Table II. 
In Section 6.3 we study the behavior of these bounds as d--* oe. 

Next let us evaluate the bound (2.29) with memory r = 2 .  Here 
# 2 = 2 d - 1 .  For k = 0 ,  we conclude from (2.14)that 

2 d -  1 ( 2 d -  1)2 1 
# ~> C2(0, 0; 1 / (2d-  1)) - 2 d -  2 C0(0, 0; 1/(2d)) (2.34) 

This bound is nontrivial for d >  2, and is a factor 

( 2 d -  1 )2 1 
2d (2d -2 )  1 + 2 d ( 2 d - 2 )  (2.35) 

better than the corresponding bound (2.31 based on r = 0. For k = 1 the 
situation is less simple: we will show in Section 3.2 that c~e}(0, 0; 1/(2d-- 1 )) 
can be obtained by solving a linear system of three equations in three 
unknowns. In Section 3.2 we show in fact how to carry out the computa- 
tions at least in principle for arbitrary values of k, and we give explicit 
numerical results for k = 0 ,  1, 2, 3, 4 in dimensions d = 2 ,  3, 4, 5, 6. The 
resulting lower bounds on kt are tabulated in Table II. In Section 6.3 we 
study the behavior of these bounds as d--* ~ .  

2.4. Inequa l i t i es  ( S e c o n d  V e r s i o n )  

The foregoing inequalities are based on constraining the attached 
loops Li to avoid the preceding k sites of the backbone p. For any memory 
r~>2, we can improve these results by using (2.18)/(2.20), i.e., by taking 
into account the further constraint that the next-to-last site of the loop 
avoid the next site of the backbone. The analysis given previously can be 
repeated almost verbatim in this case. We introduce 

/~(k;  fl) = max ~A e C~' (0, 0; fi) (2.36) 
A,e 

where the maximum ranges over all k-element sets A which are the range 
of a (k -1) - s tep  self-avoiding walk starting at a nearest neighbor of the 
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origin, and over all nearest neighbors e of the origin satisfying e r A. The 
analogue of (2.24) becomes 5 

C~(x,y;fi)<~ ~ filPlA~(O;fi)...A~(k-1;fl).Tl~(k;fl)hPL-kA~(k;fl) 
o c ~ ( x ,  y )  

= ~,k(/3) G(x, y;/L3~(k;/~)) (2.37) 

where 

~,k([J) =- A~(i; fl) / l~(k; / / )-k (2.38) 

Arguing as before, we have 

#>~~ #~ for z = 2 ,  k~>0, d > 0  (2.39) 
A~(k; #~ t ) 

(and again we expect, but have not proved, that this bound holds for all 
z > 2 ) .  

We will apply (2.39) with z = 2 ,  which requires evaluation of 
HA e C 2' (0, 0 ; /~1) .  In Section 3.2 we will prove the identity 

1 
~2A'e(0, 0; /~) -- 1 --/~2 [cA(  0, 0; //) -- flCA(0, e;/3)] (2.40) 

from which the bound (2.39) can be computed once we know the values of 
CA(0, 0; #21) and CA(0, e; p~l) .  

The use of (2.40) involves two improvements on our earlier method. ~4) 
The first improvement is conceptual, in that the derivation here of (2.40) 
is simpler and avoids the combinatorial niceties encountered in ref. 4. 
The second is that our earlier method used only [A[ = 1, and moreover 
constrained loops to avoid the previous backbone site only with their first 
and next-to-last sites, rather than entirely as in the methods of this paper. 

Our method for numerically evaluating the denominators A0(k;/~), 
A2(k; fl), and .32(k;/~) which appear in the lower bounds on # is described 
in Section 3. The numerical bounds resulting from (2.29) with z = 0, 2 and 
(2.39) with z = 2 are given in Table II as a function of the parameters r 
and k. We have restricted attention to z = 0 and ~ = 2 due to our inability 
to compute the numerical values of At(k; fl) or J r (k ; / / )  for higher 
memories. 

In Section 2.5 we will show how to improve on the bounds obtained 
so far. 

5 Here  we are ove rcoun t ing  by neglect ing the avo idance  of the next b a c k b o n e  site, for the first 
k sites of the backbone ,  to a l low for a unified t r ea tment  of IP] ~< k -  1 and  IPl >/k. 



Lowe~ Bounds on SAW Connective Constant 491 

Tablell. The Lower Bounds on IJ of (2.29) for T----0, 2 and of (2.39) for 
T----;~, for k = l ,  2, 3, 4, and the Optimized Bounds Using the Method of 

Section 2.5, for Dimensions d = 2 ,  3, 4, 5, 6 a 

(z,k) d = 2  d=3  d = 4  d=5  d = 6  

(0, 0) 0 3.956775 6.454386 8.648213 10.743414 
(0, 1) 2 4.475817 6.704650 8.809186 10.862525 
(0, 2) 2 . 1 6 1 3 6 7  4.492416 6.706478 8.809464 10.862584 
(0, 3) 2 . 2 3 4 6 9 6  4.499126 6.706931 8.809501 10.862588 
(0, 4) 2 . 2 7 5 5 1 5  4.502565 6.707091 8.809509 10.862588 

(2, 0) 0 4.121641 6,588853 8.756316 10.832942 
(2, 1) 1,712626 4.441266 6.696516 8.806308 10.861210 
(2, 2) 1,917318 4.457137 6,698205 8.806565 10.861265 
(2, 3) 2 . 0 1 9 7 8 2  4.463834 6.698632 8.806599 10.861268 
(2, 4) 2 , 0 7 9 3 9 8  4.467350 6.698783 8.806607 10.861269 

(~, 0) 0 4.245957 6.637585 8.780089 10.846669 
(~, 1) 1 . 9 7 6 3 7 2  4.539419 6.737460 8.827159 10.873577 
(~, 2) 2 . 1 5 3 3 5 0  4.552467 6.738907 8.827387 10.873627 
(~, 3) 2 . 2 3 9 2 6 5  4.557994 6.739273 8.827417 10.873630 
(~, 4) 2 . 2 8 6 2 4 5  4.560903 6.739404 8.827424 10.873631 

(0,2)ovt 2 .195201  4.518652 6.715924 8.813103 10.864240 
(0, 3)opt 2 . 2 6 7 1 2 8  4.526286 6.716713 8.813204 10.864257 
(0, 4)ovt 2 . 3 0 5 7 6 6  4.530282 6.716982 8.813224 10.864259 

(2,2)opt 1 . 9 3 6 8 1 0  4.476092 6.704487 8.808707 10.862112 
(2, 3)opt 2 . 0 3 8 2 1 6  4.483773 6.705232 8.808801 10.862128 
(2, 4)opt 2 . 0 9 2 7 4 1  4.487869 6.705488 8.808820 10.862130 

(~, 2)ovt 2 . 1 6 5 8 7 8  4.562269 6.742085 8.828430 10.874022 
(~, 3)opt 2 . 2 4 8 7 0 7  4.568677 6.742721 8.828512 10.874036 
(~, 4)opt 2 . 2 9 0 3 0 2  4.572140 6.742945 8.828529 10.874038 

a The numerical values have been truncated to give rigorous lower bounds. The lower line of 
the table provides the best lower bounds, except for d=2. Some discussion of the table 
entries is given in Section 4. 

2.5. Optimized Bounds 

Our method thus far has been based on taking the maximum over 
possible geometries for the incoming walk (i.e., the set A) in (2.23) or 
(2;36). This procedure is costly, because typically we expect that the incom- 
ing two steps of the backbone will be bent rather than straight, but the 
maximum for the small values of [AI we are using corresponds to a straight 
backbone. In fact, given that there are on average about/~ possible steps 
for a self-avoiding walk, the proportion of straight to bent steps should be 
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roughly one to /~-1.  (This is not exactly right, because the straight and 
bent steps have different probabilities for respecting self-avoidance; but it 
does indicate the expected order of magnitude.) In this section we show a 
way of partially taking this into account to obtain an improved bound. For 
concreteness, we consider the case of memory z = 0, with k-= [A] = 2. 

Summing the identity (2.17) over y ~ Z d, we have 

Iol 

Zo(/3) = ~ /3LPII- I C~~ (2.41) 
p Eg2(0,.) j = O  

Relaxing the avoidance constraints on the attached loops, to k--2 ,  we 
obtain 

Y /31 l 
p E fa(o,.) 

Our previous approach was to 

IpL 

1-I C~U-z'J)(P(J), P(J);/3) (2.42) 
j = 0  

replace the quantities C~ Ej-2'J) by the 
corresponding upper bounds based on using the worst two-element set A in 
place of p [ j -  2, j) [cf. (2.23)/(2.24)]. Now let us try instead to distinguish 
the two possible cases, 

A --- straight (i.e., congruent to {el, 2el }) 

A = bent (i.e., congruent to {el, el + e2}) 

Correspondingly, let us define 

a -= c0{el'2el}(0, 0; 1/(2d)) (2.43a) 

b =- C{o e~'e~ + e2}(0, 0; 1/(2d)) (2.43b) 

We only consider the case of 

0 < b < a < 2d (2.44) 

which is shown to be valid for our applications by numerical computation. 
It follows that 6 

Zo(fl) <~ ~ /3tPlAo(O;/3) Ao(1;/3) al(p>blpl--1 l(p) (2.45) 
p e f2(0,.) 

where l denotes the number of straight vertices among p(1),..., p ( n - 1 )  
(here n -= L pl ). Defining 

c,(l)= #{p~f2(0 ,  .): IPl =n ,  # ( s t r a igh tve r t i ces inp)= l}  (2.46) 

6 The  terms with IPl = 0, 1 are  here being ove rcoun ted  on  the r igh t -hand  side. 
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we can rewrite this as 

Zo(fl)<~Ao(O;[3)Ao(1;fi) ~ G(l) flnatb" ~-~ 
n = 0  l = 0  

=Ao(O;fl)Ao(1;fl) ~ fl~S(n;a,b) 
n=O 

where 

n - - 1  

S(n; a, b)=-- ~ c.(l) atb "-1-I 
l = 0  

that 

(2.47) 

(2.48) 

As in the preceding subsections, we will let/~ T 1/(2d), and use the fact 

lim Zo(fi) = + o o  ( 2 . 4 9 )  
fit 1/(2d) Ao(O; fl) Ao(1; fl) 

This together with (2.47) implies that 

lira sup S(n; a, b) 1/" >>. 2d (2.50) 
n ~ : x 3  

Therefore, if we can get upper bounds on S(n; a, b) in terms of the {cn}, 
then we will be able to deduce lower bounds on/~. 

E x a m p l e  1. 

and hence 

Since a > b > O, we have trivially 

S(n; a, b) ~ Cn a n -  1 (2.51) 

lira sup S(n; a, b) 1/n <. I~a (2 .52)  
n ~ o o  

Combining this with (2.50), we obtain # ~> 2d/a. This is, of course, our old 
bound (2.29) with ~ = 0, k = 2, based on using the worst set A. 

E x a m p l e  2. W e  claim that 

( n - l )  l ' (2d -2 ) ' - l -~  (2.53) cn(l)<<'2d l 

Indeed, there are ( '~1)  ways of distributing l straight vertices among the 
n -  1 internal vertices of an n-step walk; and at each straight (resp. bent) 
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vertex there are at most l (resp. 2 d - 2 )  choices for the next step. The first 
step of the walk has, of course, 2d choices. [We remark that summing 
(2.53) over l gives cn ~<2d(2d-1)  n- l ,  which is the trivial bound on cn in 
terms of memory-2 walks.] Inserting this bound into (2.48) and performing 
the sum, we conclude that 

and hence 

S(n; a, b) <. 2d[a + ( 2 d -  2) b] n 1 (2.54) 

and hence 

Since a > b > 0, we have trivially 

Sl(n; a, b) ~ c,~aLX"Jb " -  1 L2nl 

lim sup Sl(n; a, b) 1In <. #a;b 1 -;~ (2.59) 
n ~ o o  

On the other hand, from (2.53) we have 

S2(n;a,b) <-2d ~ n 1 d [ ( Z d _ Z ) b ] , _ l _  z (2.60) 
l =  L2nj  + 1 

Using Stirling's formula, we find that the summand achieves its maximum 
at 

l a 
- ~ )~o  - ( 2 . 6 1 )  
n a + ( 2 d - 2 ) b  

(2.58) 

lira sup S(n; a, b) 1/n ~ a + ( 2 d -  2) b (2:55) 
n ~ o o  

Combining this with (2.50), we learn that 

a + ( 2 d -  2) b >~ 2d (2.56) 

which is an interesting fact, but one which unfortunately teaches us nothing 
about #. 

Our approach now will be to combine, in an optimal way, these two 
ways of bounding S(n; a, b). We shall use the first bound for l~< 2n and the 
second bound for l > 2n, with a suitable choice of 2. That is, we shall split 
S = S 1 + $ 2 ,  with 

[_2nJ 

Sl(n; a, b ) -  ~ e,(l) atb n ~-t (2.57a) 
l - 0  

n 1 

S 2 ( n ; a , b ) -  ~ cn(l) alb "-1 l (2.57b) 
l - -  L 2 n J  + 1 
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and is decreasing thereafter. So let us take 2 �9 [20, 1]; then easy estimates 
show that 

limsupS2(n;a'b)l/"~,~oo 2 \ ]--7~ (2.62) 

Combining (2.50) with (2.59) and (2.62), we conclude that 

\ 1 - 2  ) J~>2d (2.63) 

for all 2e[,-20, 1]. We will choose 2 � 9  I-2o, 1] such that the second 
expression is just barely less than 2d; then we can conclude that the first 
expression is ~>2d. Now, the second expression equals a + ( 2 d - 2 ) b  >~ 2d 
[-the inequality due to (2.56)] when 2=20 ,  and equals a<2d [-the 
inequality due to our assumption (2.44)] when 2 = 1, and is a continuous 
and strictly decreasing function of 2 in the interval E2o, 1 ]. Therefore, there 
is a unique 2* �9 [2o, 1] such that 

( a']~* {(2d-2)b) '-;'* 
)-Tg j \ ~-----s = 2 d  (2.64) 

We then have the bound 

2d ( 2 d -  2']1-~* ( 1 ' ]  ~* (2.65) 
#>/a;'*bl-'~*-kl-2*J \ 2 * J  

The above inequality can be used to improve on our previous bounds. 
For ]A[--2, it can be applied directly. To apply it when JA] > 2, we classify 
A according to its first two steps, and distinguish the two possibilities by 
defining now [,we write A -= (ai, az, a3,...)] 

a -  max CA(0, 0; 1/(2d)) 
A : a l  = e l  , a 2  - -  2 e l  

b -= max cA(0, 0; 1/(2d)) 
A : a  I - - e l ,  a 2 = e  I + e 2  

(2.66a) 

Then (2.45) still holds for these a and b, and we can proceed in exaactly 
the same way as for the ]A[=2  case. The bounds for memory-2 and 
memory-~ can be optimized in the same way. The resulting bounds are 
given in Table II. 
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3. EVALUATION OF LOOP GENERATING FUNCTIONS 

3.1. Simple Random Walk 

In this section we shall reduce the computation of A0(k;/3 ) to the 
evaluation of the simple-random-walk two-point function Co(0, x;/3) at a 
suitable finite set of sites x. In particular, for computing the numerical 
bounds in Table II we need only the critical case /3 = 1/(2d). Methods for 
obtaining the values of the critical two-point function are discussed in 
detail in Appendix B of ref. 4, and a brief summary is given in the Appendix 
below. Of course the critical simple-random-walk two-point function is 
infinite in dimensions d =  1, 2; we briefly indicate the modifications needed 
to treat d ~< 2 at the end of this section. 

We begin by deriving a recursion relation which relates the generating 
functions Cg(y, x;/3) and CAUght(y, X; fl), where b is a single site and A is 
a finite set of sites which does not contain b. Applying inclusion-exclusion 
gives 

CAV{b}(y,x;fi)=Cg(y,x;fl)_ ~ fllo~l (3.1) 
co ~ ~20(y, x )  

Given a walk co contributing to the sum on the right side, we break the 
walk into two pieces at its first visit to b. The generating function for walks 
which go from y to b, which hit b only once (namely at their last step), and 
which avoid the set A is equal to C~(y, b;/3)/C~(b, b;/3). Therefore 

c'~ ~ ~ ( y ,  x;/3) = C~(y, x;/3) c~(y, b;/3) C~(b, x;/3) (3.2) 
C g(b, b;/3) 

When A is the empty set, the right side can be computed in terms of the 
ordinary two-point function Co, and then by iteration we can compute 
Cg(y, x; fl) for any finite set A. 

An amusing special case is y = x = 0 and A = {e}, where e is a nearest 
neighbor of the origin. Using the identity 

Co(0, 0;/3) = 1 + 2dflCo(O, e;/3) 

together with (3.2), we find 

C~oe~(O, 0; /3)  = ( 1  - - - -  
\ 

1 )  2 
Co(0, 0; fl) + (2dfl)2 

1 

(2d/3) 2 Co(0, 0;/3) 

(3.3) 

(3.4) 
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This is finite as/31" 1/(2d) in all dimensions d >  0 [since Co(0, 0; fl) diverges 
as/~ T 1/(2d) more slowly than ( 1 -  2d/3)-1] and yields 

Co~e~ (0, 0; ~d) = 2 -  
Co(0, 0; 1/(2d)) 

~<2 (3.5) 

In particular, we conclude that Ao(i;/3) ~< Ao(1;/3) = Co{e)(0, 0;/3) ~< 2 for all 
if> 1 and all/3 ~< l/(2d), in all dimensions. 

The computation of Ao(k;/3) for any chosen /3 is now reduced to a 
finite amount of labor. We simply list all the allowable sets A of the given 
cardinality k, exploiting the obvious lattice symmetries, and then compute 
CJ(0, 0;/3) for each such A by iterating (3.2). For IA[ = 1, we have only 
one choice, A = {e}. For [AI =2,  we compute the maximum over the two 
choices A = {el, 2el ) and A = {el, el + e2), where ei are the canonical unit 
vectors. And so forth. Values for CJ(0, 0;/3) are tabulated in Table V in the 
Appendix, and the resulting lower bounds on kt are given in Table II. 

In dimension d > 2, we can perform these computations directly at the 
critical point /3 = 1/(2d): all quantities are finite. However, in dimension 
d~<2 the two-point function Co(0, x; 1/(2d)) is infinite for all x. Never- 
theless we can show that C~(0, x; 1/(2d)) is finite whenever A # ~ ,  by 
working first at/3 < 1/(2d) and then letting/3 T 1/(2d). Note first that by the 
monotone convergence theorem we have 

cA (0'  X; 1 )  = ~ tliml/(2d) cA(O'x;/3) (3.6) 

Now the trick is to rewrite the case A = ~ of (3.2), which is certainly valid 
for/3 < 1/(2d), in terms of a quantity that (unlike Co) stays finite as/~ T 1/(2d). 
Such a quantity is the potential kernel Ao(x;/3) = Co(0, 0;/3) - Co(0, x;/3) 
discussed in Section 2.1. Rewriting (3.2) with A = ~ in terms of the potential 
kernel gives 

C~ob)(y, x; /3)  = - ~ o ( x  - y;/3) + ~ o ( b -  y;/3) + Ao(X - b;/3) 

•o(b - y;/3) Ao(X-  b;/3) 
Co(O, o;/3) 

(3.7) 

which in the limit f i t  1/(2d) in dimension d~<2 reduces to the result of 
Proposition 11.6 of ref. 15: 

C{ob) (y ,x;1)= -Ao(x-- y)+ Ao(b-- y)+ Ao(x-b) (3.8) 

822/72/3-4-6 
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In particular, this shows that C~(y,x; 1/(2d))< oo whenever A r  
Thus, once we have handled the step from Co to C{o b} using (3.8), we can 
then advance to larger values of [A] using (3.2) directly at/3 = 1/(2d), just 
as in higher dimensions. (An alternate method of computation is given 
in Theorem 14.11 of ref. 15, but we have found the recursion easier to 
implement numerically.) 

3.2. M e m o r y - 2  Wa lk  

The computation of our memory-2 lower bounds on # has now been 
reduced to the evaluation of the generating functions ca(0 ,  0; #21) and 
Ca(0, e;/~y 1) for finitely many finite sets A, just as was described in 
Section 3.1. The basic idea for the evaluation of these quantities is the same 
here as for the simple random walk, but the recursion relation requires 
more care. Suppose that b r A. If b = y, we just have 

Ca ~ {b}(y, x;/3) = 0 (3.9) 

If b 4= y, we begin as for a simple random walk by writing 

c a , ,  {b}(y, x;/3) = c a ( y ,  x , /3)  - 
a~ e g22(y, x )  

co ~ b, co ~ A = (25 

/3 IoL (3.10) 

To deal with the sum on the right side, we again want to cut the walk at 
the first time it hits b, but now the two pieces of the walk are no longer 
independent because of the memory-2 constraint. The sum on the right side 
is equal to 

/31O, ll + qo, zlI[COl(j) _# b for j < I~Ol I'1 11% o % e ~22(y, x)]  
COl e ~Q2( Y, b) ,  002 ~ / 2 2 ( b ,  x )  

COl vo oa2 ~ A = j 2 5  

= Y', fl 2 ~'~ Oo'l~bb ] ~ fl'~'2tI[~ 
) " : l f l  = 1 o ~ % g 2 2 ( y , b + f )  ~o2 e -Q2(b, x )  

m l  m A  = Q~5 co2 c~ A ~ .Q5 

(3.11) 

where co I o (D 2 denotes the concatenation of the two walks. The sum over e)' 1 
exactly gives 

Ca,O {b}(y, b + f ; / 3 )  

For the sum over co 2, we use repeated inclusion-exclusion to remove the 
constraint that o92(1 ) ~ab + f ,  to obtain 
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E 
co2 e ~d2( b , x  ) 
Co2 r~ A ~ ~ 

fll~ ~ b + f ]  = CA(b, x; fi) - flC A(b + f x; fl) 

+ ~AcA(b, x; ~ ) -  ~3cA(b +f, x; ~) + ... 

1 
- 1- f l2  ECA(b, x ; ~ ) - ~ C A ( b + f  x;fl)] 

(3.12) 

The result is 

CA'~(b)(Y,X;~)=CA(y,x;f l)--l  fl~---------5 ~ CA'~{b)(y,b+ f ;~)  
f :  I f [  = 1 

x [CA(b, X; ~ ) - 3 C A ( b + f ,  x;/~)3 (3.13) 

The above unfortunately is not a closed-form expression for the left 
side, because of the occurrence of similar quantities on the right side. 
However, for a fixed y, (3.13) provides a system of 2d linear equations for 
2d unknowns, namely { C A ~ {b)(y, b +f ; /~ )}  Ifl = i- Once we know these 2d 
quantities by solving the equations, then everything on the right-hand side 
of (3.13) is known, and C A '~ {b)(y, X; ~) can then be computed for general 
x. Fortunately, the number of unknowns is often reduced by symmetry. 
For example, for y = 0, A = Z ,  and b = e~, there are three inequivalent 
values of b+f ,  namely 0, 2e 1, and el+eA. Thus we can first solve the 
system of three equations in three unknowns which results by taking x to 
be each of the three values 0, 2el, and el + e2, and once this system has 
been solved we can then compute the left side directly for any other value 
of x. Concretely, for d =  3, we get 

c2{el}(0, 0; 1) ~,~ 1.125805 

C{e~}t02 t , 2el; 1) ~ 0.074441 

c~elI(O, el + eA; !)5 ~ 0.138449 

(3.14a) 

(3.14b) 

(3.14c) 

For  [AI ~> 1 we can proceed similarly; results are given in Table VI in the 
Appendix. 

The right side of (3.13) can be used directly at the critical point in 
more than two dimensions, but it contains infinities for d = 2 when A is the 
empty set. In two dimensions a limiting argument is first used to deal with 
A = ~Z~, and then for [A] >~ 1 the recursion can be used directly as above. 
Surprisingly, the resulting bounds are worse than those obtained using 
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simple random walk, and so we do not give the details of the limiting 
argument, but instead give only the result: for b ~ y, 

c~b}(y,x; 1)= �89 ~[Ao(b-- y)--Ao(X- y)]  + d o ( x - b )  

- ~  ~ C~b~(y,b+f;])Ao(x-b-f)  (3.15) 
f :  I f l  = 1 

Results are discussed in Section 4.2. 
Finally, let us derive the identity (2.40), which shows how the evalua- 

tion of -A e C 2' (0, 0;/3) can be reduced to the evaluation of C~(0, 0;/~) and 
C2~(0, e;/3). In fact, (2.40) is just the special case b = x = 0  of (3.12), once 
one takes into account the symmetry between the two endpoints of the 
walk. 

4. D ISCUSSION OF RESULTS 

4.1. Three or More  Dimensions 

From Table II it can be seen that for d>~ 3 the ~ = 2 bound does better 
than r = 0 when k = 0, as was already shown at the end of Section 2.3. 
Perhaps surprisingly, for k/> 1 this situation is reversed: higher memory 
means a more "sophisticated" bound, but it does not necessarily mean a 
better bound! In any case, the bounds with memory-~ do better than the 
corresponding memory-0 bounds. 

In all cases with memory-0 or memory-2 in Table II, the set A giving 
the maximum of CA(0, 0; 1/(2d)) is the straight line segment, as can be 
expected intuitively for small IAI. However, for large IAI in general it is not 
to be expected that the straight segment is optimal, and an example of an 
optimal A which is not straight is given below for d =  2. (We thank Greg 
Lawler and Alain Sznitman for discussions on the nonoptimality of straight 
A for large ]AI.) In Table II it is also the case that straight A gives the 
maximum for the memory-2 bounds, although a priori there seems to be no 
compelling reason to expect this to be the case: in (2.40) straight A will 
give the maximum individually for each of C2A(0, 0;/~) and cA(0, e;/~), but 
possibly not for the difference. 

4.2. T w o  Dimensions 

Unfortunately, for d = 2 our methods do not produce good bounds on 
/~, as can be seen from Table 1I. For example, with IAI = 4 and T = 0 we 
have only/~ ~> 2.275515. To get a measure of the inherent limitation of the 
method in two dimensions, and in view of the relatively slow convergence 
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of the bounds as k increases, we computed the value of 2d/C~k(O, 0; 1/(2d)) 
with L k the collinear set of k sites joining ( - 1 ,  0) to ( - k ,  0). For large k 
we do not expect that Cg(0, 0; 1/(2d)) is maximized over sets A with 
IA[=k by C~(O,O;1/(2d)), and in fact already for k = 5  and 
A = { ( -1 ,  0), ( - 2 ,  0), ( - 3 ,  0), ( - 4 ,  0), ( - 4 ,  1)} we have 

CA(O,O;~d)~,1.739044>l.738131~CoLs(O,O; I )  

Nevertheless 2d/C~(O,O; 1/(2d)) does provide an upper bound on 
the best possible v=(0,  k) lower bound on #. For k = 6 0  we found 
2d/C~6~ 0; 1/(2d))=2.404210, and by extrapolating the sequence for 
k~< 60 to k ~  o% we found a limiting value less than 2.42. Substantially 
better lower bounds on # can be obtained by other methods. (2'5) 

The situation for v = 2 is only slightly better. Solving the system (3.15) 
of three equations in three unknowns gives 

C{fl)(O, 0; �89 ~ 1.751695 (4.1a) 

c2{el}(O, 2el; �89 0.649131 (4.1b) 

c2{el}(0, el .~e2 ; 1),~ 0.799587 (4.lc) 

This gives the very weak bound # >/3/1.751695 ~> 1.712626. By imposing the 
additional restriction that there should be no direct returns at the end of 
the loop [-the memory-~ bound of inequality (2.39)], this is improved to 
#/> 1.976372, which is comparable to the result obtained with memory-0. 

Again for memory-2 and memory-~ we computed the bounds arising 
from A = L k for large k, to obtain an idea of the inherent limitation of 
the method. For memory-2 and k =  58 we found a bound of 2.268661, 
while for memory-~ and k = 5 8  we found a bound of 2.443124. Only 
marginally higher values result when these are extrapolated to k--, Go. 
Since straight A in general will not be optimal, the best possible bound 
on # using memory-2 or memory-~ may in fact do worse than these values. 
In particular, for the memory-~ bounds straight A already fails to 
provide a maximum when k = 4 ,  where the optimal A is the bent set 
A = { ( -1 ,  0), ( - 2 ,  0), ( - 3 ,  0), ( - 3 ,  1)}. 

Because of the poor results for d =  2 we have not done a rigorous error 
analysis of these d = 2 computations, but we do expect that they are correct 
to the given accuracy. 
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5. C O M P A R I S O N  TO THE ISING M O D E L  A N D  THE INFRARED 
B O U N D  

Our simplest (and worst) bound 

2d 
#~> (5.1) 

Co(0, 0; 1/(2d)) 

is in fact not new, as it is an immediate consequence of earlier results of 
Fisher (21) and Fr6hlich eta/. (22) Also, this bound was proven by Lawler (23) 
for dimensions d >  4, via a different perspective on loop erasure. 

Fisher's result is that the two-point spin correlation function (axay)s 
of the nearest-neighbor ferromagnetic Ising model with inverse temperature 
J (and zero external field) obeys the inequality 

(Gxay)j~ G(x, y; t anh  J) 

from which he concluded that 

(5.2) 

# >/coth Jc, Ising (5.3) 

where Jc, Ising is the critical inverse temperature of the Ising model. The 
infrared bound of ref. 22 gives 

C0(0, 0; 1/(2d)) 
Jc.Ising ~< 2d (5.4) 

Combining these two inequalities yields 

~> coth ( C~ 0_; 1/(2d)!'] # \ 2d J 
(5.5) 

This bound is an improvement on (5.1), and yields (5.1) when combined 
with the inequality coth x >~ x -1 (for positive x). 

Table III gives the value of coth Jc, ising, using numerical estimates of 
Jc, Ising, and compares it with the bounds (5.1) and (5.5) as well as with the 
best rigorous lower bounds on #. Values of Jc, Ising are taken from the exact 
solution Jc, ising= �89 + . , f2 )  for d =  2, from the Monte Carlo study (24) 
for d = 3, and from the series extrapolation results of ref. 25 for d = 4 and 
ref. 11 for d = 5, 6. If we accept the (nonrigorous for d ~> 3) numerical values 
of Jc, Ising, then our best lower bounds are better than the best possible 
bound that can arise from (5.3) for d~> 4, but not for d =  2, 3. However, for 
d =  2 the enumeration bound of Conway and Guttmann tS) does better than 
the Ising-model bound. The fact that our best bounds do better in high 
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Table II1. Comparison of the Ising-Model Lower Bound coth Jc.=s~ng 
wi th  the Best Lower Bounds on pa 
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d 2 3 4 5 6 

Jc, lsing 0.440687 0.2216595(26) 0.149663(34) 0.113917(7) 0,092294(7) 
2d/Co(O, O; 1/(2d)) 0 3.956776 6.454386 8.648214 10.743415 
coth[(1/2d) Co(O,O; 1/(2d))] 1 4.040663 6.505948 8.686723 10.774424 
coth Jc, lsing 2.414213 4.58507(5) 6.7315(15) 8,8162(6) 10,8657(9) 
Our best bound on p 2.305766 4.572140 6.742945 8.828529 10.874038 
Best bound on/~ 2.62002 4.572140 6.742945 8.828529 10.874038 

a The values of Jc, lsing a r e  nonrigorous numerical estimates for d =  3, 4, 5, 6; errors in the last 
digit(s) are shown in parentheses. Other quantities are rounded to six digits, except for the 
lower bounds in the last two lines, which have been truncated. 

dimensions than (5.3) can be explained by the fact that our best bounds 
capture more terms of the 1/d expansion for/~ than does the right side of 
(5.3); see Section 6. 

6. H I G H - d  BEHAVIOR OF THE LOWER B O U N D S  

The lace expansion has been used ~12) to give a rigorous proof that as 
d ~ o c ,  

1 3 16 
# = 2 d - 1  2d (2d) 2 t )'2d'~ +O(d-4 )  (6.1) 

The next term has been given in refs. 26 and 27, 

1 2 11 62 
2 d -  1 + (6.2a) 

2 a -  1 ( 2 a -  1)2 ( 2 d -  1)3 ( 2 d -  1)~ 

1 3 16 102 
= 2 d -  1 . . . .  + -.. (6.2b) 

2d (2d) 2 (2d) 3 (2d) 4 

but with no rigorous bound on the error. In this section we study the 1/d 
expansion for our (and other people's) lower bounds on/~, and show that 
our best bound agrees with (6.1) up to and including the term of order d 2. 

In Section 6.1 we analyze briefly the d-dependence of some older lower 
bounds on #. It turns out that most of these methGds have very poor 
behavior as d ~  ~ ;  this was, in fact, the original motivation for us to 
develop the loop-erasure-and-restoration method. In Section 6.2 we corn- 
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ment briefly on some results of Kesten,(2~ which are based on a precursor 
of our method. In Section 6.3 we analyze the high-d behavior of the loop- 
erasure-and-restoration bounds, and show that they capture the first few 
terms of the lid expansion of/z. An interesting structure emerges from the 
comparison of how many terms are captured for different pairs (~, k). In 
Section 6.4 we carry out an analogous analysis for the bounds based on 
comparison to the Ising model. 

6.1. High-d Behavior of the Older Lower-Bound Methods 

We assume in this subsection that the reader is acquainted with the 
definition and fundamental properties of bridges and irreducible bridges; 
see, e.g., refs. 2 and 13. 

Let bn (resp. i,) be the number of n-step bridges (resp. n-step 
irreducible bridges) starting at the origin and ending anywhere. By conven- 
tion, bo = 1 and i0 = 0. These counts satisfy the renewal equation 

b~=fn,  o+  ~ ikbn_k (6.3) 
k = l  

We define for/3 ~> 0 the generating functions 

B(/~)--- ~ bnfi n (6.4) 
n = O  

1(3)=  ~ i,/~" (6.5) 
n = O  

Now 0 ~< i. ~< b. ~#n, and hence it follows from (6.3) that 

1 
B(/~) = for /3~<# -~ (6.6) 

1 - I ( / ~ )  

Also, it is known that 

< (1 - /~# ) -1  < oo for 0~</~<# 

B(/~) 1-* +oo for pT/~ 1 
I .= +oo for /~>~ 1 

I(/~) 1 for fl  ~ ~ 1 

= + o o  for / ?>~-~  

(6.7) 

(6.8) 
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Now suppose that we have enumerated il,..., ix. (In practice one does 
this by enumerating bl,..., b x and solving (6.3). (2)) Then, defining 

N 

Ix(fl) =- ~,, infl" (6.9) 
n = l  

we have IN(fl)<~I(fl)< 1 for f i < #  1. It follows that 

l 
I~ > l.t,,x=--- t~ (6.10) 

/-' $ , N  

where f l , ,x is the unique positive solution of the polynomial equation 
Ix(fl) = 1. 

How does the bound (6.10) behave as d ~  oo for fixed N? We are 
unable to give the precise asymptotic behavior, but we can give an upper 
bound as follows: Trivially we have in ~< b,, ~< ( 2 d -  1 )"-  l, because the first 
step of a bridge must be in the +e l  direction, and for the remaining steps 
there are at most 2 d -  1 choices each. Therefore, 

N 

Ix(fl)<. y" ( 2 d - 1 ) n - l f l  n (6.11) 
n = l  

In particular, the solution fl,,N of Ix(fl,,U)---- 1 must be greater than or 
o f ~ n = l  ( 2 d -  1) "-~ n equal to the solution fi@*,N W f l** ,W = 1. Now, it is easy 

to see that for each f ixed N, as d ~ oo we have 

fi**,x = ( 2 d -  1 ) - (u -  ~)/X [1 -- O(d-1/X)] (6.12) 

so that 

1 1 
-- <~-- = ( 2 d - - I ) ( N - 1 ) / N [ I + O ( d - 1 / N ) ]  (6.13) 
= 1 3 . . , x  

So this method, for any fixed N, can never get even the correct leading 
asymptotic order (namely # ~ d) as d--+ oo. 

In practice, this method gives the best currently available bounds for 
d=2,  ~2'5) but it is inferior to the loop-erasure-and-restoration method 
for d > 3 .  

Other early lower bounds on # are those of Rennie, (28~ 

+ log 2 - j ~  log ( j+  1) (6.14) #/> 2d-- log d-- 3 + x ~  ~ j [ j - -  log(j + 1)] 
=3 

and Hammersley, ~29) 

,u ~> 2 d -  log (2d-  1 ) -  1 (6.15) 
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These bounds get the correct first term in the large-d expansion, but 
numerically they are rather poor. 

Some other methods for proving lower bounds on # in d =  2, 3 are 
given in ref. 14; but they do not appear to behave well as d ~ 0o. 

6.2. Kes ten ' s  B o u n d s  

A precursor of our method was used by Kesten (2~ to prove that 

# >>- #2r - O(d -r) (6.16) 

for all r >/0. Kesten's method involves loop erasure and restoration at the 
level of counts rather than generating functions. Since trivially # ~< #2r, 
(6.16) implies that the 1/d expansion of #2r agrees with the first r + 1 terms 
of the l id expansion for #. Unfortunately, from the point of view of 
numerical estimates on #, (6.16) is not very helpful, since it is difficult to 
get good constants in the error term. Nor is it easy to compute the l id 
expansion of #zr for r >~ 3, so as to obtain the l id expansion for # beyond 
three terms. However, using r = 2 in (6.16) together with (2.8), one obtains 

# >~ 2 d -  1 - 1 +  O(d_2) (6.17) 
2;6[ 

which gives a bound agreeing with the first three terms of the l id expansion 
for #, albeit without good control of the error term. 

6.3. lid Expansion for the Loop-Erasure-and-Restoration 
Lower Bounds 

We now turn to the computation of the 1/d expansions for some of 
our lower bounds on #. We use the shorthand s = 1/(2d). The standard of 
comparison for all our bounds is the series (6.2), 

# = s -1 - 1 - s -  3s 2 -  16s 3 -  102s4 + ... (6.18) 

which is provably correct through order s 3 and presumably correct also at 
order s 4. As always, we classify our bounds according to the memory they 
use ( r = 0 , 2 ,  or 2) and how far back on the backbone they enforce 
avoidance of the attached loops (k = 0, 1, 2, 3,...). We introduce the nota- 
tion #(~,k) to denote the bound obtained by considering (~, k)-quantities. 

Our most basic bound (2.31) is based on r = 0 ,  k - -0 ;  using (A.17), its 
1/d expansion is 

2d 
- =s  1 - 1 - 2 s - 7 s 2 - 3 5 s 3 - 2 1 5 s 4 + O ( s S )  (6.19) #co, o) Co(O, O; 1/(2d)) 
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This gets the first two terms correct, but  misses the term of order  s. The 
next simplest bound  (2.32) is based on r = 0, k = l; using (A.17) and (2.33), 
we obtain 

2d 
] ~ ( 0 , 1 )  ( ' 0  t u ~ t e } ' ^ '  0 ;  1/(2d)) = s -~  -- 1 -- s -- 4s 2 -- 22s 3 -- 143s 4 + O(s 5) (6.20) 

This gets the first three terms correct, and just barely misses the term of 
order  s 2. As can be seen from Table VI I I  in the Appendix, taking k = 2 or 
3 does not  improve on (6.20). 

Next  let us consider the bounds  based on the memory-2  loop. The 
simplest such bound  (2.34) is based on ~ = 2, k = 0; using (2.14) and (A.17), 
it becomes 

2 d -  l 
#(2.0) = --s-a-- l--s--6sZ--35s3--222s4+O(s 5 ) (6.21) 

C2(0, O; 1 / ( 2 d -  1)) 

This gets the first three terms correct. The bound  is further improved if we 
go to k = 1: making use of  Table IX, we have 

2 d -  1 -1 
~ ( 2 , 1 )  . c{e}(o O; 1 / ( 2 d -  1)) - s  

2 t 

- -  1 - -  S - -  4 S  2 - -  23s 3 - 1 5 0 s  4 + O(s 5) 

(6.22) 

The term of order  s 2 is improved compared  to (6.21), but  the coefficient is 
still not  correct. This bound  based on r = 2, k = 1 is inferior (at order  s 3) 
to the simpler bound  based on r = 0, k = 1, as was the case for the numeri- 
cal values of  Table II. Using Table IX, we can see that  the expansion for 
#(2,2) is identical to (6.22). 

Better memory-2  bounds  can be obtained by insisting that the 
at tached loops avoid also the next site on the backbone  (Section 2.4). The 
simplest such bound  is 

/?~,o) = 2 d -  1 = s - 1  

~,e(0, 0; 1/(2d- 1)) 
- 1 - s - -  5 s  2 - -  29s 3 -- 188s 4 + O(s 5) 

(6.23) 

where we have used Table X. This gets the first three terms correct, and 
does better at order  s 2 than (6.21), but  still has not  yet got the correct coef- 
ficient - 3 .  This coefficient is, however, captured correctly if we combine 
the constraints involving the previous and next steps on the backbone,  i.e., 
if we go to z = 2, k = 1. To see this, consider the loop generating functions 
~el}.-~1(0 ' 0; 1 / ( 2 d -  1)) and c{2el}'e2(o, O; 1/(2d--  l)), which by symmetry  
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are the only two geometries to be considered. Intuitively, the second should 
be greater than the first, since a walk which must avoid el will prefer to 
return to the origin from - e~ ,  so the constraint is greater when this 
possibility is disallowed. In fact this intuition is borne out by the numerical 
results, and, as can be seen from Table X, it is also evident from the lid 
expansion. From Table X we have 

= - s - 1 - s -  3S 2 -- 18S 3 -- 124s 4 + O(s s) 
c~el~'e2~02 t , 0; 1 / ( 2 d -  1)) (6.24) 

which has the correct coefficient of order s 2, and as a bonus only misses the 
correct coefficient of order s 3 by 2. It is also clear from Table X that the 
expansion for/~,2~ is identical to that of p(~,l), through the order shown 
in (6.24). 

The optimized bounds of Section 2.5 do not improve substantially on 
(6.24): we find that for the optimized bound using k = 2 and ~ = 2 the terms 
up to and including order s 3 are as in (6.24), while the coefficient of s 4 is 
improved slightly from - 1 2 4  to -122 .  

In general we do not expect that there will be improvements below 
order s 5 when k is increased beyond 1, for a given memory. For  example, 
for k = 2 the number of hexagons which pass through a specific next- 
nearest neighbo r of the origin is only O(d), and hence when multiplied by 
f16 is an order-s 5 effect. This can be viewed as a partial explanation of the 
small size of the improvements observed in the numerical bounds as IAI 
increases beyond 1. 

6.4. lid Expansion for the Ising-Model Lower Bounds 

Let us first look at the bound (5.5) obtained by using comparison to 
the Ising model together with the infrared bound on Jc,~si,g. This improves 
our basic r = 0, k = 0 bound by virtue of the coth, and yields 

5 20 s2 _ 1531 s3 + O(s4 ) (6.25) 
#~>s ' -  1 - ~ s - ~ -  4--Y- 

We see that the coth makes only a slight improvement in the term of order 
s, and does not achieve the correct coefficient - 1 ,  

The method based on comparison to the Ising model is potentially 
more powerful than this, if one could get a better bound on Jc, Ising" 
The best possible result is obtained by inserting the exact (nonrigorous) 
expansion 

( 4 13 2 9~59 2009 4 ) 1 Jc, lsing = s 1 - 1 - - ~ s - ~ s - - - $ 3 - - - - ~ s - t - . , .  (6.26) 
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derived by Fisher and Gaunt  ~26) into (5.3); the result is 

2 3 394 
/~>~coth(Jc, Ising ) ---s - 1 -  1 - s - 4 s  - 2 1 s  - - ~ - - s  + ..- (6.27) 

This achieves the correct first three terms, but does not do as well as (6.24) 
on the term of order s 2. Of course, it is a highly nontrivial open problem 
to prove rigorously such good bounds o n  Je, Ising- 

A P P E N D I X .  S I M P L E  R A N D O M  W A L K  

A.1.  N u m e r i c a l  Eva luat ion  of  the  T w o - P o i n t  Funct ion  

To evaluate our lower bounds on /~ numerically, it is necessary to 
know the numerical values of the critical simple-random-walk two-point 
function Co(0, x; 1/(2d)) for various values of x. An effective method of 
evaluating this quantity (as well as the subcritical two-point function) 
numerically to high precision, with rigorous error bounds, has been 
described in considerable detail in Appendix B of ref. 4. We now summarize 
briefly how the calculation goes in the critical case. 

We begin with the integral formula 

where 

Co 0, x;~-~ = E . . . .  ~ ( 2 n ) a l - L 3 ( k )  (A.1) 

We then apply the identity 

i = 1  

1 fo e - m  dt (A.3) 
A 

which is valid for A > 0, with A = 1 - / 5 ( k ) .  This factorizes the integrals 
over k l  ..... ka, which can then be performed to give 

Co O, x; -- d I-[ frxiJ(t) dt (a.4) 
i = 1  

where 

f N  (Z) =-- e = zI N (Z) ~ Z~ ~ J~- ~ e-Z(1 . . . .  0) COS NO dO (A.5) 
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and IN(Z) is the modified Bessel function. This transforms the d-dimen- 
sional integral (A.1) into a one-dimensional integral over a semi-infinite 
interval. 

The integrand in (A.4) decays as t ~ oe only as a power. We speed up 
the decay by making the change of variables t = e", obtaining 

where 

(A.6) 

d 

F(u) = e "  [ I  fl~,(e") (A.7) 
i=1 

We then use standard methods to bound the difference between the integral 
(A.6) and an infinite Riemann sum, truncate the Riemann sum with bounds 

Table IV. Numerical  Values of Ao(X) for d = 2 ,  and of C0(0, x; 1 / (2d ) )  
for d = 3 ,  4, 5, 6, for the Values of x 

Needed to Compute the Lower Bounds on p a 

3o(X ) C0(0, x; 1/(2d)) 

x d = 2  d = 3  d = 4  d = 5  d = 6  

(0) 0 1.5163860744 1.2394671218 1.1563081248 1.1169633732 
(1) 1 0.5163860744 0.2394671218 0.1563081248 0.1169633732 
(1, 1) 1.2732395447 0.3311486174 0.1017176302 0.0474085960 0.0271774706 
(1, 1, 1) - -  0.2614701416 0.0618723811 0.0222517907 0.0100651251 
(1, 1, 1, 1) - -  - -  0.0447274307 0.0133523237 0.0049990827 
(i ,  1, 1, 1, 1) - -  - -  - -  0.0092253734 0.0029872751 
(2) 1.4535209105 0.2573359025 0.0659640719 0.0275043553 0.0148223998 
(2, 1) 1.5464790895 0.2155896361 0.0436586366 0.0139794831 0.0058409498 
(2, 1, 1) - -  0.1917916659 0.0334570990 0.0089609415 0.0030848645 
(2, 1, 1, 1) - -  - -  0.0275824802 0.0065163319 0.0019448478 
(2, 2) 1.6976527263 0.1683310508 0.0259898362 0.0062387819 0.0019599801 
(2, 2, 1) - -  0.1569524280 0.0221867673 0.0047601264 0.0013047592 
(3) 1.7211254632 0.1652707962 0.0262936339 0.0068995628 0.0024959268 
(3, 1) 1.7615031763 0.1531389140 0.0217691587 0.0048774493 0.0014526312 
(3, 1, 1) - -  0.1441957255 0.0189286425 0.0038130772 0.0009927439 
(3, 2) 1.8488263632 0.1324510884 0.0159271735 0.0029340473 0.0006998942 
(4) 1.9079745896 0.1217332189 0.0137700477 0.0024716782 0.0006024105 
(4, 1) 1.9295817894 0.1171305125 0.0125592552 0.0020829365 0.0004528519 
(5) 2.0516093163 0.0966064672 0.0085112166 0.0011537265 0.0002044795 

a The values are rounded to ten digits after the decimal point. Final components  of x which 
are not  shown are equal to zero. 
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Table V. Numerical Values of CA(0, 0; 1 / (2d) )  for d = 2 ,  3, 4, 5, 6, 
for Various Choices of A a 

A d=2 d=3 d=4 d=5  d=6 

.@ co 1.516386 1.239467 1.156308 1.116963 
{el} 2 1.340537 1.193202 1.135179 1.104715 
{el, 2el} 1.850680 1.335584 1.192876 1.135143 1.104709 
{el, el+ez} 1.735910 1.322546 1.190625 1.134570 1.104514 
{el, 2el, 3el} 1.789955 1.333592 1.192796 1.135138 1.104709 
{ea, 2e~, 2el+e2} 1.767994 1.330950 1.192528 1.135103 1.104703 
{el, e I + e2, 2el+e2} 1.695733 1.320170 1.190465 1.134555 1.104512 
{el, ex+e2, el+2ea} 1.658351 1.317957 1.190277 1.134530 1.104507 
{el, el+e2, e i+e  2 + e3} - -  1.314688 1.189764 1.134435 1.104485 
{e~, e~+e2, e2} 1.357421 1.226256 1.153726 1.115672 1.093040 

a The values are rounded to six digits after the decimal point. 

on the omit ted tails, and evaluate the resulting finite R iemann  sum, using 

the large-z asymptot ic  expansion for the modified Bessel funct ion to deal 
with large t and  a t runcated Taylor  series for the modified Bessel funct ion 

to deal with the remaining  t. We also take into account  possible roundoff  
errors in the numerical  computat ions .  The result is that  we obta in  the 

values in Table IV. The values of A o ( X  ) for d = 2, which are know n  exactly, 
have been computed  using the algori thm described in Section 15 of ref. 15. 

Table V gives numerica l  values of CA(0, 0; 1/(2d)), computed  as 
described in Section 3.1. Table VI gives the values of CA(0, 0; 1 / ( 2 d - 1 ) ) ,  

Table VI. Numerical Values of C~(0, 0; 1 / ( 2 d -  1 )) for d = 2 ,  3, 4, 5, 6, 
for Various Choices of A a 

A d=2 d=3 d=4 d=5 d=6 

oo 1.213109 1.062400 1.027829 1.015421 
{el} 1.751695 1.125805 1.045320 1.021995 1.012778 
{el, 2el} 1.564686 1.121796 1.045056 1.021965 1.012773 
{el, e l+e2} 1.481256 1.113713 1.043739 1.021661 1.012681 
{el, 2el, 3el} 1.485308 1.120113 1.044989 1.02196t 1.012773 
{el, 2el, 2el+e2} 1.465260 1.118079 1.044790 1.021935 1.012769 
{el, el+e2,  2el+e2} 1.423896 1.111657 1.043606 1.021649 1.012680 
{el,e~ + e2, e~ + 2e2} 1.388210 1.110045 1.043471 1.021631 1.012677 
{el ,e  1 +e2, e 1 + e 2 + e3} - -  1.107650 1.043096 1.021561 1.012660 
{e~, el+e2, e2} 1.211771 1.071615 1.031850 1.017013 1.010433 

a The values are rounded to six digits after the decimal point. 
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TableVl l .  Numerical  Values of ~ A ' e ( 0 , 0 ; l / ( 2 d - - 1 ) )  for d = 2 ,  3 , 4 ,  5, 6, 
for Various Choices of A, e a 

A,e d = 2  d = 3  d = 4  d = 5  d = 6  

{el},  - - e l  
{el}, e2 
{el,  2el},  - - e  1 
{el,  2el},  e2 
{el, e l+e2} ,  - e l  
{el, el +e2}, e2 
{ei,  el -.}- e2}, - - e  2 
{el, el +ez}, e3 

1.177591 1.054600 1.025047 1.014136 
1.304467 1.097370 1.038115 1.019313 1.011519 
1.349274 1.101462 1.038967 1.019581 1.011627 
1.193791 1.093963 1.037871 1.019285 1.011514 
1.238380 1.098305 1.038744 1.019554 1.011622 
1.140666 1.086889 1.036639 1.018992 1.011424 
1.210882 1.094439 1.038093 1.019408 1.011579 
1.170686 1.090659 1.037469 1.019256 1.011531 
- -  1.091432 1.037558 1.019272 1.011535 

The values are rounded to six digits after the decimal point. 

computed using the method of Section 3.2. Table VII gives numerical 
values for ~A C 2' (0, 0; l / ( 2 d -  1)), computed using the method of Section 3.2. 

A.2. 1/d Expansions 

This section contains lid expansions for several relevant quantities. As 
before, we use the shorthand s = 1/(2d). First, the following are obtained 
by directly integrating powers of cosines: 

, a ' ~ k  Ok" 
fE-.=]~(2~) ~ ( ) = 

"s (n = 2) 

3s 2 - 3s 3 (n = 4) 

15S 3 - -  45S 4 q- 40s 5 (n = 6) 

105s4-630sS +1435s6-1155s  7 ( n = 8 )  

945s 5 + O(s 6) (n = 10) 

O(s  6) (n/> 12) 

( A . 8 )  

I 
S 

6s 3 _ 8s 4 

f[_~ =]~ dak ~ . .~ 45S 4 -  165S5+ 165S 6 (-~u)d D(k)  cos  2k~ = 

' / 4 2 0 s  5 -}- O(S 6) 

k o ( r  

(n = 2) 

(n = 4 )  

( n = 6 )  

(~ = 8) 
(n/> 10) 

( A . 9 )  
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2s 

J l2s 3 - 24s 4 

f ddk ~ 90s4 - 450s 5 + 660S 6 
jE . . . .  Y (2g)a/3(k)" cos k 1 cos k 2 = / 840s5 + O(s6) 

ko ( : )  

f S dak D k " 10s4-  15s5 
fE . . . .  1 ~ (~-~d ( ) cos 3kl = )105s5 + O(s6 ) 

ko(:)  

( n = 2 )  

(n = 4) 

(n = 6) 

(n = 8) 

(n/> 10) 

(A.10) 

(n=3)  

(n = 5) 

( n=7)  

(n>~9) 

(A.11) 

3S (n = 3) 

r dak [) , ~30s 4 - 70s 5 (n = 5) (A.12) 
JE . . . .  1~ ( ~ a  (k) cos 2ka cos k 2 = }315s5 + O(s6 ) (n = 7) 

[,O(s 6) (n/> 9) 

(6S 3 (n = 3) 

f~_,~jd (-~n) aD( ddk ^ k ~ ) - ~60s4-180s  5 (n=5)  (A.13) 
. c~176176 ) (n=7)  

t,o(:) (,, >/9) 

The above,  combined  with the expansion 

1 . = b '~ + - -  (n ~> 0) (A.14)  
1 - - D  , .=o  1 - - D  

and est imates on errors using L e m m a  B.I of ref. 30, i.e., 

ID(k)t" 
f - O ( s  m/e) ( d > 2 n ,  m~>0) (a .15)  

[ ~,~]" (2n) d [1 -b(k)]"  

leads to expansions for the integrals 

l,,,.,(x) = I ddk D(k)m ei~~ 
JE ,~,,q.(2rg)d ~ _~(~. (A.16) 

In par t icular  for Co(0, x; 1/(2d)) = Ii,o(X), we have 

I lo (O)=l+s+3s2+12s3+60s4+355sS+O(s  6) (A.17) 

I lo(el)  = s + 3s 2 + 12s 3 + 60S 4 + 355S 5 + O(s  6) (A.18) 

822/72/3-4-7 
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Table VIII. l i d  Expansions for CA(0, 0; 11(2d)) for Various Choices of A 

A CoA(0, 0; 1/(2d)) 

{el} 
{e 1 , 2el}  

{el ,  e l  + e 2 }  
{ex, 2e l ,  3el} 

{el ,  2ex, 2el  + e 2 }  

{el ,  ex4-e2,  2el + e 2 }  

{el ,  el  + e 2 ,  e,  + 2 e 2 }  

{el ,  e l  +e2, el + e 2 + e 3 }  

{el ,  e l + e 2 ,  e2} 

1 + s + 3s 2 4- 12s 3 + 60s 4 q- 355s 5 + O(s 6) 
1 + s + 2s 2 4- 7s 3 q- 35s 4 4- 215s s + O(s 6) 
1 + s + 2s 2 + 7s 3 + 35s 4 + 215s 5 + O(s  6) 

1 + s + 2s 2 + 7s 3 q- 34s 4 -4- 202s s + O(s  6) 

1 + s + 2s 2 + 7s 3 + 35s 4 4- 215s 5 + O(s 6) 
1 + s + 2s z + 7s 3 q- 35s 4 + 215s 5 + O(s 6) 

1 + s + 2s 2 + 7s 3 4- 34s 4 + 202s s + O(s 6) 

1 4- s + 2s 2 + 7s 3 + 34s 4 4- 202s s + O(s  6) 

1 + s + 2s 2 + 7s 3 4- 34s 4 4- 202s 5 + O(s  6) 

1 +s+s2+2s3+ 14s4+ l15sS+O(s 6) 

I l o ( 2 e l )  = s 2 + 6 s  3 + 3 7 s  4 + 2 5 5 s  s + O ( s  6) 

Ilo(el + e2) = 2s 2 + 12s 3 q- 66s 4 + 390s 5 + O(s 6) 

lm(3e,)  = s 3 + 10s 4 + 90s s + O(s 6) 

Im(2el + e2) = 3s 3 + 30S 4 q- 245s s + O(s 6) 

Ilo(el + e2  q- e 3 )  = 6 s  3 q- 6 0 s  4 q- 450s s + O ( s  6) 

It can also be shown that 

sup Ilo(X) = 0 ( $ 4 ) .  
Ixl > 3 

(A.19) 

(A.20) 

(A.21) 

(A.22) 

(A.23) 

(A.24) 

Analogous expansions for higher In,m will be given and used in ref. 12. 
Finally, we turn to the lid expansions for loop-generating functions 

with taboo set. Beginning with the lid expansions for Co(y, x; 1/(2d)) = 
Ilo(X-y) given above, and then using the recursion (3.1), we obtain the 
lid expansions for CoA(0, 0; 1/(2d)) given in Table VIII. The 1/d expansions 

Table IX. l / d  Expansions for cA(0, 0; 11(2d-  1 ) ) 
for Various Choices of A 

A CA(0, 0; 1 / ( 2 d -  1)) 

{el} 
{<, 2<} 
{ex, e l + e 2 }  

1 q- S 2 q- 7S 3 q- 43S 4 + 278S 5 + O(s ~) 
1 + S 2 + 5S 3 + 29S 4 + 188S 5 + O(s ~) 
1 + s 2 + 5S 3 + 29S 4 + 188S 5 + O(s 6) 
1 + S 2 + 5S 3 + 29S 4 + 182s 5 + O(s 6) 
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Table X. l /d Expansions for ~ZA'~ 0; 1 / (2d -1  ) 
for Various Choices of A, e 

A ~  e ~ A  e . C z" (0, 0, l / ( 2 d - -  1 )) 

~ ,  e 1 + s 2 + 6s 3 + 36s 4 + 235s 5 + O(s 6) 

{el }, - - e l  1 + s 2 + 4s 3 + 22s 4 + 146s 5 + O(s 6) 
{e 1 }, e 2 1 • S 2 -~ 4S 3 + 23S 4 + 154S 5 + O(S 6) 
{el ,  2el }, - - e l  1 + s 2 + 4s 3 + 22s 4 + 146s 5 + O(s 6) 
{el ,  2el }, e 2 1 + s 2 + 4s 3 + 23s 4 + 154s 5 + O(s 6) 
{el ,  e~ + e 2 }, - - e l  1 + s 2 + 4s 3 + 22s 4 + 1 4 0 J  + O(s 6) 
{el ,  e 1 + e2}, e 2 1 + s z + 4s 3 + 23s 4 + 1 5 2 J  + O(s 6) 

{el, el + e2}, --e2 1 + s 2+4s  3 + 2 3 s  4 +  148s 5 + O(s  6) 
{el, el + e2 }, e3 1 + s 2 + 4s 3 + 23s 4 + 148s s + O(s  6) 

for memory-2 quantities are more difficult to handle. As described under 
(3.13), we first solve (3.13 ) for { C ~ ~ {b } (y, b + f )  } Ift = ~, for fixed y. At this 
stage, special care is needed to make full use of symmetry, since naively 
(3.13) is a system of equations for 2d unknowns (and here d ,7 oe). By 
symmetry, we can reduce (3.13) to a system of equations for a number of 
unknowns which is uniformly bounded in d (at least for small ]AJ and 
lY[, ]x[ ), and obtain the results in Table IX. Then, using (2.40), we compute 
the 1/d expansions for -A e C 2 ' (0, 0) given in Table X. 

ACKNOWLEDGMENTS 

We wish to thank Tony Guttmann for helpful comments and for 
sending us his unpublished data. 

The authors' research has been supported in part by Natural Sciences 
and Engineering Research Council of Canada grant A9351 (G.S.) and U.S. 
National Science Foundation grants DMS-8911273 and DMS-9200719 
(A.D.S.). Acknowledgment is also made to the donors of the Petroleum 
Research Fund, administered by the American Chemical Society, for par- 
tial support of this research under grants 21091-AC7 and 25553-AC7B-C 
(A.D.S.). The work of G.S. was carried out during visits to the Centre 
de Physique Thborique of the Ecole Polytechnique at Palaiseau and the 
Forschungsinstitut ffir Mathematik of the ETH at Ztirich, and he thanks 
these institutio0s and their members for their kind hospitality. Numerical 
calculations were done using FORTRAN and Mathematica on an IBM 
RS/6000-350 of the Kitahara group of the Department of Applied Physics, 
Tokyo Institute of Technology. 



516 Hara et aL 

R E F E R E N C E S  

1. J. M. Hammersley and K.W. Morton, Poor man's Monte Carlo, J. Roy. Stat. Soc. B 
16:23-38 (1954). 

2. A. J. Guttmann, Bounds on connective constants for self-avoiding walks, J. Phys. A: 
Math. Gen. 16:2233-2238 (1983). 

3. T. Hara and G. Slade, Self-avoiding walk in five or more dimensions. I. The critical 
behaviour, Commun. Math. Phys. 147:101-136 (1992). 

4. T. Hara and G. Slade, The lace expansion for self-avoiding walk in five or more 
dimensions, Rev. Math. Phys. 4:235-327 (1992). 

5. A. R. Conway and A.J. Guttmann, Lower bound on the connective constant for square 
lattice self-avoiding walks, preprint (1992). 

6. S. E. Alm, Upper bounds for the connective constant of self-avoiding walks, Preprint 
(1992), to appear in Combinatorics, Probability and Computing. 

7. A. J. Guttmann and 1. G. Enting, The size and number of rings on the square lattice, 
J. Phys. A: Math. Gen. 21:L165-L172 (1988). 

8. A. R. Conway, I. G. Enting, and A. J. Guttmann, Algebraic techniques for enumerating 
self-avoiding walks on the square lattice, J. Phys. A: Math. Gen. 26:1519-1534 (1993). 

9. A. J. Guttmann, Private communication. 
10. A. J. Guttmann, On the zero-field susceptibility in the d =  4, n = 0 limit: Analysing for 

confluent logarithmic singularities, J. Phys. A: Math. Gen. lI:L103-L106 (1978). 
11. A. J. Guttmann, Correction to scaling exponents and critical properties of the n-vector 

model with dimensionality >4,  J. Phys. A: Math. Gen. 14:233-239 (1981). 
12. T. Hara and G. Slade, The self-avoiding walk and percolation critical points in high 

dimensions, In preparation. 
13. N. Madras and G. Slade, The Self-Avoiding Walk (BirkhS.user, Boston, 1993). 
14. M. E. Fisher and M.F. Sykes, Excluded-volume problem and the Ising model of 

ferromagnetism, Phys. Rev. 114:45-58 (1959). 
15. F. Spitzer, Principles of Random Walk, 2nd ed. (Springer, New York, 1976). 
16. G. F. Lawler, Intersections of  Random Walks (Birkh~.user, Boston, 1991). 
17. C. Domb and M. E. Fisher, On random walks with restricted reversals, Proc. Camb. 

Philos. Soc. 54:48-59 (1958). 
18. J. M. Hammersley, The number of polygons on a lattice, Proc. Camb. Philos. Soc. 

57:516--523 (1961). 
19. J. M. Hammersley and D. J. A. Welsh, Further results on the rate of convergence to the 

connective constant of the hypercubical lattice, Q. 9". Math. Oxford (2) 13:108-110 (1962). 
20. H. Kesten, On the number of self-avoiding walks. II, J. Math. Phys. 5:1128-1137 (1964). 
21. M. E. Fisher, Critical temperatures of anisotropic Ising lattices. II. General upper bounds, 

Phys. Rev. 162:480-485 (1967). 
22. J. Fr6hlich, B. Simon, and T. Spencer, Infrared bounds, phase transitions, and continuous 

symmetry breaking, Commun. Math. Phys. 50:79-95 (1976). 
23. G. F. Lawler, A connective constant for loop-erased self-avoiding random walk, J. Appl. 

Prob. 20:264-276 (1983). 
24. A. M. Ferrenberg and D. P. Landau, Critical behavior of the three-dimensional Ising 

model: A high resolution Monte Carlo study, Phys. Rev. B 44:5081-5091 (1991). 
25. D. S. Gaunt, M. F. Sykes, and S. McKenzie, Susceptibility and fourth-field derivative of 

the spin-�89 Ising model for T >  T c and d=4 ,  J. Phys. A: Math. Gen. 12:871-877 (1979). 
26. M. E. Fisher and D.S. Gaunt, Ising model and self-avoiding walks on hypercubical 

lattices and "high-density" expansions, Phys. Rev. 133:A224-A239 (1964). 
27. A. M. Nemirovsky, K. F. Freed, T. Ishinabe, and J.F. Douglas, Marriage of exact 



Lower  Bounds on S A W  Connect ive  Constant  517 

enumeration and 1/d expansion methods: Lattice model of dilute polymers, J. Stat. Phys. 
67:1083-1108 (1992). 

28. B. C. Rennie, Random walks, Magyar Tud. Akad. Mat. Kut. Int. Kozlemen A 6:263-269 
(1961). 

29. J. M. Hammersley, Long chain polymers and self-avoiding random walks, Sankhya 
25A:29-38 (1963). 

30. T. Hara, Mean field critical behaviour for correlation length for percolation in high 
dimensions, Prob. Theory Rel. Fields 86:337-385 (1990). 


